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ABSTRACT The increase of connected devices and the constantly evolving methods and techniques by
attackers pose a challenge for network intrusion detection systems from conception to operation. As a result,
we see a constant adoption ofmachine learning algorithms for network intrusion detection systems. However,
the dataset used by these studies has become obsolete regarding both background and attack traffic. This work
describes the AB-TRAP framework that enables the use of updated network traffic and considers operational
concerns to enable the complete deployment of the solution. AB-TRAP is a five-step framework consisting
of (i) the generation of the attack dataset, (ii) the bonafide dataset, (iii) training of machine learning models,
(iv) realization (implementation) of the models, and (v) the performance evaluation of the realized model
after deployment. We exercised the AB-TRAP for local (LAN) and global (internet) environments to detect
TCP port scanning attacks. The LAN study case presented an f1-score of 0.96, and an area under the ROC
curve of 0.99 using a decision tree with minimal CPU and RAM usage on kernel-space. For the internet
case with eight machine learning algorithms with an average f1-score of 0.95, an average area under the
ROC curve of 0.98, and an average overhead of 1.4% CPU and 3.6% RAM on user-space in a single-board
computer. This framework has the following paramount characteristics: it is reproducible, uses the most
up-to-date network traffic, attacks, and addresses the concerns to the model’s realization and deployment.

INDEX TERMS Cybersecurity, datasets, intrusion detection system, machine learning, network security,
supervised learning.

NOMENCLATURE
AUC Area Under the Curve.
B5G 5G and beyond.
CoAP Constrained Application Protocol.
CPS Cyber-Physical System.
CSV Comma-separated values.
DDoS Distributed Denial of Service.
DL Deep Learning.
DNP3 Distributed Network Protocol 3.
DoS Denial of Service.
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DT Decision tree.
eBPF Extended Berkeley Packet Filter.
FPGA Field Programmable Gate Array.
FPR False Positive Rate.
FTP File Transfer Protocol.
HIDS Host Intrusion Detection System.
HTTP Hypertext Transfer Protocol.
ICS Industrial Control System.
IDS Intrusion Detection System.
IEC International Electrotechnical Commission.
IoT Internet of Things.
IP Internet Protocol.
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IT Information technology.
kNN k-Nearest Neighbours.
LAN Local Area network.
LKM Linux Kernel Module.
LR Logistic Regression.
MitM Man in the Middle.
ML Machine Learning.
MLP Multi-Layer Perceptron.
MQTT Message Queuing Telemetry Transport.
NB Naïve Bayes.
NF Netfilter.
NIC Network Interface Card.
NIDS Network Intrusion Detection System.
OTA Over-The-Air.
pcap Packet capture.
SQL Structured Query Language.
RF Random Forest.
ROC Receiver Operating Characteristic.
SBC Single Board Computer.
SDN Software Defined Network.
SSH Secure Shell.
SVM Support Vector Machines.
TCP Transmission Control Protocol.
TPR True Positive Rate.
TTL Time-To-Live.
UDP User Datagram Protocol.
VM Virtual Machine.
VPN Virtual Private Network.
XDP Express Data Path.
XGB Extreme Gradient Boosting (XGBoost).

I. INTRODUCTION
Nowadays the internet is ubiquitous and an enabler of
the concept known as the internet of things (IoT). This
concept allows billions of devices to be accessible through
the internet, revolutionizing our day-to-day lives. In this
reality, and considering the deployment of B5G (5G and
beyond) technology that reduces communications latency,
disruptive applications will become true, such as autonomous
driving, autonomous trafficmanagement, and remote surgery.
Therefore, we must expect a considerable change in the
network traffic pattern and new attacks targeting these
applications. In this context, cybersecurity poses a significant
technical challenge since the lack of base characteristics (i.e.,
availability, confidentiality, and integrity) hindermost of the
envisioned vertical applications [1].

The interconnected nature of the devices requires the
security-by-design approach, which brings pros and cons
to building security protection. On the IoT domain, there
is the use of cryptography, secure hardware (to avoid
tampering), and intrusion detection systems (IDS) [2]. Also,
there are other mechanisms envisioned for IoT such as
blockchain, fog computing, machine learning (ML), and edge
computing [3]. All of them have to deal with the inherent
property of resource and energy constraints seen in IoT

devices. Cyber-physical systems (CPS) comprise industrial
control systems (ICS), smart grids, smart cars, and medical
devices. However, the security flaws in that system are
recurrent and current protection may not be adequate as new
exploitation techniques arise. Moreover, a big challenge in
this domain is that security incidents can lead to a catastrophic
scenario (directly affecting people), the applicable security
mechanisms in this domain are those also applicable for
IoT, and the CPS also introduces requirements for access
control [4].

The security of communications imposes a con-
stantly evolving characteristic due to attacks and network
infrastructure. As new vulnerability disclosure introduces
unknown attacks, attempts in the network [5], and by
the changing of network infrastructure caused by mobile
networks, or by fresh devices entering the network like those
from IoT and CPS. This inherent characteristic of networked
communications along with the massive amount of available
data (or the capability to obtain it) take the use of ML
that, in summary, aims to learn from data. Therefore, this
application field can also address this evolving characteristic.
For instance, ML models can deal with estimable features
from transport and network internet protocols, like UDP, TCP,
and IP, and as a result addressing upper layers protocols from
IoT and CPS domain such as MQTT, CoAP, Modbus, DNP3,
IEC 61850, and those from IT such as HTTP, FTP, Telnet,
SSH, among others.

Consider the Cyber-kill-chain attack model; the recon-
naissance phase is responsible for revealing the potential
target hosts. Thereby building protection modules to prevent
devices from being discovered by malicious agents indicated
a promising approach. It acts as an invisibility shield to
devices, and the task comprises identifying abnormal patterns
and avoiding responding to them. However, the main barrier
of this approach relates to the lack of appropriate datasets [6];
in other words, easy to generate and up-to-date with recent
attack samples datasets are seldom available.

In this paper, we present AB-TRAP (Attack, Bonafide,
Train, RealizAtion, and Performance), a framework to
build adaptive solutions to the task of developing Network
Intrusion Detection Systems (NIDS). We state a clear
separation in capturing high-quality malicious and bonafide
traffics followed by a Machine Learning (ML) classification
task. At this point, we advance and show the concerns
involved in the realization of the ML models, analyzing the
feasibility of implementation and performance evaluation.
Therefore, the contributions of this work are:
• The AB-TRAP framework specification, which allows
an end-to-end approach to building adaptive NIDS
solutions.

• The performance analysis of different machine learning
algorithms, aiming at the model realization in the target
machine.

• Two study cases take into account local (LAN) and
global (Internet) environments with kernel-space and
userspace implementation.
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This paper’s remainder is structured as follows. We
describe the most relevant related solutions in Section II.
In Section III, we describe the AB-TRAP framework.
We describe the validation of AB-TRAP and the results of
two case studies in Section IV. Finally, we summarize our
work and provide direction for future works in Section V.

II. BACKGROUND AND RELATED WORK
A. INTRUSION DETECTION SYSTEMS (IDS)
Intrusion Detection Systems (IDS) are responsible for
identifying malicious activities. It may refer to a broad class
of systems whose input is a traffic source and decide to
classify whether an instance is malicious. There are host-
based and network IDS, the former receive local information,
whereas the latter has access to global data. Identification
of the malicious activities may consider network packets
isolated (stateless) or take a set of packets that form a
flow [7]. Therefore, the application requirement influences
how protection on the target system is, which includes
tackling the IDS locality in decisions.

As argued in [7] and [8], approaches to the identi-
fication problem include signature1- and anomaly-based.
Knowing the attacks’ pattern helps to trace profiles in
packets and communications, thus forming a signature of
the network’s malicious packets. On the other hand, for
specific applications and well-known services, the distinction
between normal and abnormal patterns leads to the decision
when anomalies appear unexpected. Hence, establishing how
hostile the operational environment favors exclusively one
approach or other, or a hybrid one.

The stochastic nature of network traffic patterns and the
packet features shift the modeling to statistical, Machine
Learning (ML), and other techniques [7]. When defining a
task to incorporate in IDS solutions, these classes of algo-
rithms are responsible for classification. Thereby increasing
the information gain based on datasets, they represent the core
component to the system’s decision-making process.

B. MACHINE LEARNING (ML) ON NIDS DOMAIN
The usage of old datasets for network security research
is notorious [9], being challenging to tackle this issue, as
described in [6]. The use of old datasets on NIDS research
stills a concern as confirmed by [10]–[13], which reports the
adoption of DARPA 1998, KDD-CUP ’99, and NSL-KDD
as the most-used ones, yet these datasets are around two
decades old by now. An important factor in favor of reusing
old datasets is applying Machine Learning (ML) algorithms
to provide new approaches. From this perspective, well-
established and available datasets allow benchmarking the
performance of different solutions. Meantime, old datasets
get aged and become obsolete for NIDS development and
research as we observe the emergence of new types of attacks
and network communication architectures. Privacy issues
also prevent the availability of new public datasets [12].

1Signature-based is commonly referred as misuse-based

Therefore, creating novel mechanisms to incorporate new
technologies and cleaning the sensitive data from real-world
traces balances keeping the existing dataset and constant
updates.

A survey on NIDS datasets is provided by [14] that
highlights the challenges of (i) outdated datasets in use by
NIDS research, (ii) the characteristic of being unable to
cope with the evolving pace of attacks, (iii) not using real-
life traffic, and (iv) the limited number of specific purpose
datasets (e.g., SCADA systems). Hence, a framework’s
adaptability is crucial to incorporate new features and updates
to novel solutions [15]. As pointed by [12], the current
datasets are not complete, and their utility is subject to their
source. Further, they describe five categories of properties:
nature of the data, volume, recording method, evaluation,
and general information. The survey evinces the importance
of testing solutions against multiple datasets to widen the
case coverage, as labels and features help identify each set’s
screening profile. Thus, datasets play a crucial role in the
proposal of NIDS solutions.Moreover, enable reproducibility
and criteria for evaluation.

Machine learning (ML) algorithms are sensitive to the
application-layer and protocols-specific traffic patterns.
Under the Industrial Internet of Things (IIoT) context, [17]
carried a study focused on SCADA systems. They were
able to identify backdooring and SQL injection attacks using
the clustering strategy. However, the results are too specific
to that systems. Therefore, the combination of domain-
specific dataset and ML provides insights into the solutions’
development process and requires care to avoid overfitting.

Despite observing the dataset and correctly setup ML,
patterns and attacks have a lifespan; that is, they are
time-varying. As shown by [18], a study identified a six-
week of good performance in the trained models, and the
accuracy standard lasts from two to eight weeks. That study
issues a vital discussion on the NIDS solutions’ realization,
indicating it is a process, not a software artifact deployed
on the facilities. Nevertheless, their solution is resource-
intensive, requiring CPU power, outbound network channels
for analysis and storage.

Regarding the concern of not up-to-date datasets, [19]
proposed a method to generate a dataset using a simulated
environment and to use an anomaly detection approach to
evaluate the detection performance for known, similar, and
new attacks. However, the authors reported the inability to
detect new attacks on the evaluated scenarios.

From the IoT domain, [16] presents a survey of state of
art in IoT intrusion detection by the time. In addition to the
more surveys previously discussed here, the authors report the
unsuccessful task of collecting the artifacts for reproducibility
and cross-validation of the papers and highly recommend
open access. The [20] uses a dedicated dataset called Bot-
IoT [21] in a hybrid approach, using both anomaly and
signature-based NIDS. This hybrid approach first evaluates
if a network flow is anomalous. If yes, then this object is
forwarded to the attack classifier. Despite considering the
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applicability of the proposed framework for IoT devices
and being a promising hybrid approach, the authors do
not present the realization and performance evaluation of
the solution to confirm their claims. It is also dependent
on others datasets to continually evolve its solution. [22]
generates its dataset using two physical testbeds, one using
IP cameras and the other with multiple IoT devices in a
wireless network. The authors proposed an anomaly-based
NIDS to detect the attacks performed on these testbeds and
evaluate the autoencoder’s performance in a Raspberry Pi
with success. However, the developed dataset is very tied to
the built testbeds and difficult to reproduce.

The balance of high-quality datasets, properly trainedmod-
els, case coverage, and resource consumption is challenging.
As described by [23], datasets are the entry-point for such an
equation and present multiple trade-offs. The leading utility
in this context is the fostering of prediction. Hence, that
servers as guidance to derive lightweight solutions suitable
for devoided computing power devices. However, timed and
a span of other types of attacks impact the performance of
ML-based solutions [24]. Salting bonafide traces with attack
variations expose weaknesses in models and support novel
approaches to overcome them. Therefore, the combination of
bonafide and malicious attacks allows flexibility to explore
new patterns and adapt to the ML training phase.

C. IMBALANCED DATASETS
Imbalance in datasets for Network Intrusion Detection Sys-
tems is notorious for decreasing the effectiveness of Machine
Learning (ML) based solutions. Different algorithms perform
better or poorly when deployed depending on how discrepant
the lack of adequate proportion of bonafide (legitimate or
benign) and malicious. [27] present criteria for selecting
proper datasets; however, the results are too specific for the
application’s context and hard to generalize. When shifting
to more specific domains (e.g., Industrial), the imbalance
problem becomes more evident. As a reference, the survey
about IDS datasets conducted by [12] reports only 1 balanced
dataset out of 34. The results from [25] show how sensitive
models are when facing changes in such an imbalance;
therefore, this is a vital characteristic to consider when
evaluating or producing datasets. This problem is recurrent,
and we see an increasing interest in this topic [29]. Many
of the issues were addressed and still have many challenges
to tackle. It is a vast area of study and not entirely
concentrated in NIDS. Therefore, being out of our work’s
scope, the appreciation of how imbalance influences the
models.

D. FILLING THE GAP TO REAL-WORLD
The previously mentioned characteristic of timely-evolving
security plays a fundamental role in developing solutions
to mitigate new attacks and identify new network traffic
patterns.

The [13] states the low performance of NIDS in a real-
world environment as a research challenge. Some of the

probable causes defined by [13] are the use of old datasets
and not evaluating the proposed solutions considering a
realistic environment. Also, the resources consumed by
complex models for deep learning impact the adoption of
these solutions. In addition, the authors report as research
challenges: the lack of a systematic approach for dataset
generation capable of being updated frequently and the
focus on lightweight IDS solutions aiming to secure IoT
environments with sensor nodes with limited resources.

Complementing this discussion, the anomaly- versus
signature-based approaches illustrate the contrast between
the real-world NIDS solutions widely deployed, such as
Snort,2 and Suricata3 that are signature-based. The current
researches on anomaly-based NIDS with questionable per-
formance for new attacks as discussed by [6], evidenced
by [19] for new attacks class. It is reported by [30] that
some companies avoid anomaly-based systems. The survey
conducted by [9] evaluated the references according to its
approach: anomaly-, misuse- (signature) or hybrid-based
with a majority of signature-based IDS (26 out of 39).

The trade-off of the signature-based approach is the
good performance to detect known attacks on the cost of
difficult to detect new attacks (zero-days). On the other hand,
the anomaly approach can detect new attacks but suffers from
high false positives rates. We use known attacks as part of
our ML approach that could learn the patterns of the known
attacks beyond the traditional rule-based learning, leading
to satisfactory performance for similar attacks as reported
by [19].

Another concern of NIDS solutions is using the method
based on packet payload data (e.g., deep packet inspection).
This method becomes unsuccessful due to the increasing
presence of encrypted network traffic. Regarding attack
techniques, the use of VPN and SSH tunneling to evade
firewalls and NIDS [31] evidences the flaw in current
solutions. To address this concern, the use of ML raises as
a feasible technique to learn the patterns without requiring
inspecting packets’ payload data. This technique had been
proven useful for mobile devices as reported by [32], [33].
Also, we have the concept drift of ML models [34] with
NIDS making unreliable predictions over time [18]. It is an
inherent learning challenge to determine anomalous patterns
in a specific dataset and generalize them to other devices
and networks. A hybrid approach as presented by [20] and
addressing concept-drift with periodical model updates are
good paths to fill the gap to the real world too.

The adaptive nature of the attacks and traffic pattern
requires various areas to support novel approaches in the
NIDS solution context. For example, the assumption of a
completely safe perimeter is not reasonable, and shifting
to a zero-trust architecture [35] can increase network
assets’ overall protection. Simultaneously, the adoption of
resource-intensive solutions (such as dedicated IDS with

2Snort: snort.org
3Suricata: suricata.io
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TABLE 1. Attributes presented on the evaluated IDS surveys as research challenges (3: Yes, Empty: No).

outbound infrastructure) and lightweight modules to offer
invisibility or mitigation to malicious attacks offer protection
to the network. Thus, the creation of less resource-intensive
modules enables a better protection solution to hybrid NIDS
(classic and distributed).

E. SUMMARY
As we see, modern solutions for Network Intrusion Detection
Systems (NIDS) are complex and involves the combination
of multiple areas to provide adaptive features. Machine
learning-based detection emerges as a trend in current
implementations as providing a feasible framework for
classification. The literature review highlight the follow-
ing aspects as research challenges: up-to-date datasets,
labeled data, traffic diversity, reproducibility, operational
overhead, real-world performance, and interpretability with
the evaluated surveys summarized in Table 1 and we
keep all these attributes on AB-TRAP framework. From
the IDS implementation perspective, the aspects of dataset
quality, generality in models, adaptability, implementation
feasibility, and operational overhead are of major importance.
Mechanisms as over-the-air updates (OTA) and low-resource
machine learning models (such as TinyML [36]) are usually
not seen by the literature. However, they play an essential
role in the models’ realization, becoming an impediment
when models are incompatible with the target hosts’
requirements.

Therefore, our work differs from others by mapping
the first attempt to approach new attacks until the mit-
igation module deployment. We describe it as an end-
to-end framework to implement software artifacts in the
iterative process of protecting the network perimeter. Our
solution offers the means to inspect and improve data quality
and case coverage by specifying a step for systematically
reproducing or collecting malicious activities and mixing
them with bonafide traffic. The separation of datasets and
models is crucial and present in our solution, enabling
different models’ specifications, each with peculiarities and
different learning metrics. Performance in the modeling
phase is not the guarantee of realization in the target system.
Depending on the model characteristics, it will require
computational resources that are infeasible for the target.
Thus, our solution requires the model realization followed
by the computing system performance evaluation. All the

steps in our framework form a pipeline. The first input is
the traffic, and the final output is the protection module;
moreover, it is suitable to be part of the constantly evolving
monitoring of network threats. Thereby, our framework fills
a gap in the adaptive process of developing NIDS solutions.
A comparison between the reviewed works focused on
implementation and their characteristics in comparison with
AB-TRAP are present in Table 2. We also consider the attack
scope narrow as an attribute of comparison based on [6]
recommendations for using ML in the IDS domain. To the
best of our knowledge, the AB-TRAP is the only framework
addressing adaptability with a systematic approach for up-
to-date dataset generation capable of evolving with attacks
changes, also addressing the model realization and its
computational performance evaluation to support the real-
world application.

III. AB-TRAP FRAMEWORK
This section describes our solution to enable an itera-
tive and end-to-end approach to derive protection mod-
ules. We present AB-TRAP (Attack, Bonafide, Train,
RealizAtion, and Performance), a framework comprising
steps to build Attack and Bonafide datasets, train machine
learning models, realize (implement) the solution in a target
machine, and evaluate the protection module’s performance.
Figure 1 depicts the AB-TRAP’s development chain. The
design decisions during its use are also presented, such as a
dataset change required over the training of machine learning
models or changes required after the non-compliance with
the performance evaluation. These new requirements on the
performance evaluation can lead to changes in the training
phase (e.g., use other algorithms) or the approach used
by the realization step (e.g., kernel-space vs. userspace
deployment).

A. ATTACK DATASET
Our framework starts with a method to generate a dataset
containing the attacks. The objective is to overcome the
available datasets’ challenges: not containing the most recent
attacks, not reproducible, and not properly labeled. Our
analysis from a recent datasets’ survey [12], restricted to the
port scanning problem (presented in our study cases), started
from 34 documented datasets, after considering: only those
with packets granularity, and labeled datasets, resulted in just
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TABLE 2. Comparison with related work that implements a NIDS (3: Yes, Empty: No).

FIGURE 1. AB-TRAP Framework.

five datasets, but none of them presented the most recent
tools, and techniques for port-scanning, such as Internet-wide
scanners like Zmap [37], and masscan [38] or not enough
information was public to determine all attacks present on the
dataset. This analysis illustrates the challenges pointed out as
the purpose of this framework.

In this paper, we detail the generation of attack datasets
based on network packet granularity. However, it is possible
to take advantage of the proposed methods using virtual
machines (VMs) and containers to create new attack datasets
based on network flow, and also for host-based IDS
(HIDS), using logs and operating systemmeasurements (e.g.,
processes; I/O usage).

B. BONAFIDE DATASET
The bonafide dataset contains examples of legit behavior.
For the supervised learning approach, it is mandatory to
have this dataset. It is also essential for the evaluation of
both supervised and unsupervised learning algorithms. This
dataset can be retrieved from open-data traffic providers as
MAWILab [26], from public datasets as [19], or generate
the bonafide dataset considering the deployment environment
for the trained model. The third option is the most difficult
to perform and the most successful because the bonafide
traffic behavior can change from one environment to the other
and from time to time. In all cases, we see the critical and
challenging task of correctly labeling also applies.
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TABLE 3. Confusion Matrix (+: Positive Class, – : Negative Class).

The proposed AB-TRAP dataset generation workflow is
known as salting [24], combining legit and attack data.
Obtained from real traffic traces and synthetic datasets,
keeping inmind the objective to address the current issue with
NIDS research using outdated and unlabeled datasets [6],
[14], [23].

C. TRAINING MODELS
ThisAB-TRAP step is responsible for creatingmachine learn-
ing (ML) models using the previous steps’ datasets. For
the ML application on network intrusion detection systems
(NIDS), the essential points to highlight are the assessment
metrics and the envisioned realization of these ML models.
Regarding the assessment metrics, the most used from the
ML domain is the accuracy. Though, once the NIDS is
inherently an imbalanced learning problem, we use the F1-
score, precision, and recall as the assessment metrics for
selecting the trained models with precision representing the
exactness, and recall its completeness, then F1-score is the
weighted harmonic mean between precision and recall. These
metrics use the values retrieved from the traditional confusion
matrix (Table 3), such as True-Positive (TP), True-Negative
(TN), False-Positive (FP), and False-Negative (FN):

Precision =
TP

TP+ FP
, Recall or TPR =

TP
TP+ FN

,

F1-score = 2×
Recall× Precision
Recall+ Precision

.

F1-score has a high correlation with receiver operating
characteristic (ROC) and the area under the ROC curve
(AUC). However, we also use ROC/AUC to support the trade-
off during the development of the models. This ROC/AUC
use the recall, also known as sensitivity or true positive rate
(TPR), and the false-positive rate (FPR), also known as false
alarm:

FPR =
FP

FP+ TN
.

One lesson learned over the framework development is
related to the challenges for the realization of ML models.
In the NIDS domain, there is an opportunity to perform the
intrusion detection in the network core, with solutions oper-
ating at a higher level (e.g., userspace). On the other hand,
the classification algorithms could operate directly in the end-
node at a lower level, implementing it in conjunction with
network stack software or directly in the network interface
cards (NIC) through SmartNICs/FPGAs [39]. In both cases,
the implementation of trained models is a challenge. Thus,
we consider ML algorithms that are interpretable [40] to
support the realization step of AB-TRAP when considering
kernel-space deployment.

D. REALIZATION
The realization step starts from the trained model selected
in the previous step and requires implementing a compu-
tational system’s trained model. Further, we must consider
a highly coupled solution between the implementation
and deployment environment. Thus, we present here some
possibilities. For the software-defined networks (SDN) /
OpenFlow environments, commonly associated with higher
computational resources, the deployment is associated with a
holistic view of the network environment. For instance, [41]
proposes an IDS deployment in multiple stages, from the
cloud down to IoT gateways. The cloud-based IDS have
elastic resources, so no rigorous attention is required for
realization (e.g., it is acceptable to use deep learning
methods). In the middle of the traffic path on the fog
environment, the deployment in the SDN controllers, which
generally also provide sufficient computational resources,
and finally IDS tasks in the SDN-based IoT gateways
also have enough computational resources for complex
processing. The IoT devices in the perception layer are out
of scope as a deployment target.

Considering the IoT device in the perception layer that
is usually resource-constrained, we must take this inherent
characteristic as requirement for the realization step. First of
all, it is possible to envision the deployment of IDS rules
in these devices from a zero-trust architecture perspective.
Thus, along with the lack of resources, they are unable to
evaluate their network perimeter. For those microcontroller-
based devices, the realization of theMLmodelsmust be along
with the network stacks used by them in a lightweight way
once power, processing, and memory are constrained.

For those devices using embedded Linux, the most promis-
ing approach takes advantage of kernel-level processing.
In these cases, it would be possible to use Linux Kernel
Modules (LKM) alongwith Netfilter for packet filtering. This
approach is possible since Linux kernel 2.4 released in 2000.
The approach with LKM and Netfilter processes each packet
received in the network interface during its traversal path
up to the application layer. Another realization approach for
Linux systems is through eBPF/XDP (extended Berkeley
Packet Filter / eXpress Data Path), eBPF released in the
kernel 3.18 using a virtual machine available in Linux Kernel
that allows the execution of byte-code safely direct in the
kernel space. The XDP available since kernel 4.8 enables
the eBPF code to run directly in the network driver or on the
SmartNICs, making the process at the earliest point of the
network traversal path. Our preliminary analysis in a single
board computer with an embedded Linux presents an increase
of network throughput when using eBPF/XDP instead of
LKM/Netfilter [42].

E. PERFORMANCE EVALUATION
Our final step in theAB-TRAP aims to evaluate the developed
NIDS solution’s performance in the deployment environ-
ment. This performance evaluation is part of the framework
because the trained ML model may have a resource demand
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or create a bottleneck that makes it a deterrent for real-life
use. There are two major groups for performance metrics,
those based on the network performance and the metrics
based on the device performance. We point to the throughput
measurement for both total bytes and the number of packets
per second for network metrics. For devices, the power
consumption, CPU usage, and RAM consumption during
NIDS model operation compared with the baseline could be
another NIDS solution or vanilla configuration.

IV. STUDY CASE: PORT SCANNING DETECTION
In this section, we present the AB-TRAP framework address-
ing port scanning detection. The port scanning detection is a
strategic decision as it enables the attack interruption in its
early stages, also known as reconnaissance phase by security
frameworks. Studies performed on 7.41 Petabytes of network
traffic, collected in a network backbone between 2004 and
2011, raised that about 2.1% of packets are scan [43].
We exercise our framework in two contexts: firstly in

a local area network (LAN) to address networks not open
to the Internet. This context is typically associated with
lateral movement during attacks and with malware spread
inside enterprise networks; secondly, to address the port
scanning issue in the Internet environment, that is normally
associated with massive scanning to identify accessible assets
over the internet, or in conjunction with the release of new
remote vulnerabilities to identify non-patched systems. For
both study cases, we consider a stateless approach for port
scanning detection.

A. LOCAL AREA NETWORK (LAN)
1) ATTACK DATASET
The first step is always obtaining a dataset of the positive
examples for our learning task. In this case, it is a dataset
containing network packets of port scanning in a LAN
environment. This paper uses a reproductive and automated
approach that takes advantage of virtualization methods and
the LAN environment. We use Vagrant4 to create multiples
virtual machines (VMs), as detailed in Figure 2.
This architecture consists of an attacker subnet

(172.16.0.1/32) with an attacker VM running on Kali
Linux5 with the most-updated port scanning tools and
using a provisioning shell script that executes all the
possible combinations of attacks to the target VM in the
victim’s subnet (10.10.10.1/32). The provisioning script
considers a specific IP address for each of the attacks
performed, which serves as a label to the data. Furthermore,
we configure two VMs with static routes to interconnect
the subnets, and router0 is responsible for capturing all the
traffic between both subnets. Table 4 summarizes the scope
of port scanning tools and techniques we use. The techniques
are those that use partial or full three-way handshake from
TCP protocol, TCP SYN and TCP Connect, respectively,

4Vagrant by HashiCorp: vagrantup.com
5Kali Linux: kali.org

FIGURE 2. LAN Environment.

TABLE 4. Port scanning tools and techniques for TCP Scan.

FIGURE 3. Composing AB-TRAP dataset with bonafide data.

or flag-based techniques that use specific behaviors of the
TCP implementation by the operating systems for malformed
packets/flags (in comparison with RFC 793) to infer the state
of the services in the target machines.

2) BONAFIDE DATASET
For the bonafide dataset, we make use of the MAWILab
dataset [26]. It is 15-minutes daily traffic from a trans-
pacific backbone between the USA and Japan. The process
to obtain the bonafide traffic is based on the premise that
for each MAWILab dataset, the labels of anomalous and
suspicious traffic are also available. From that, we perform a
filtering step to remove all packets based on these labels/rules.
The rules consider source/destination IP, source/destination
ports and provide a specific taxonomy for each non-bonafide
traffic. In conjunction with this information, reports a
heuristic and distance measurement from [26] classifiers
to determine the traffic as anomalous or suspicious based
on a combination of four various detectors. We obtain the
bonafide dataset that is merged with the attack dataset from
the previous step to obtain our AB-TRAP dataset from this
process. This dataset generation flow is presented in Figure 3.
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FIGURE 4. Decision tree analysis.

To obtain the bonafide dataset for this LAN study case,
we used the MAWILab dataset of November 11th, 2019.6

It is a 10GB pcap file divided into multiple files to be
managed by a regular desktop PC. After that, we remove all
anomalous and suspicious packets according to its rules, then
a randomized sampling of 75, 000 packets from each split,
resulting in a total of 2, 141, 635 packets and 184.9 Mb.

3) TRAINING MODELS
From theAB-TRAP generated dataset (denoted as S), the first
step is to address this supervised learning task as a binary
classification problem, in other words, all attacks labeled
by its tools/technique (Table 4) are re-labeled as ‘‘attack’’
or the positive class (yi = 1), and the remaining packets
as ‘‘bonafide’’ or the negative class (yi = 0). The training
dataset S = (xi, yi), i = 1, . . . ,m, where xi ∈ X is an
object in the n-dimensional feature space X = {f1, f2, . . . fn},
and yi ∈ Y = {0, 1}. The feature space is composed by all
TCP/IP header features, and in this LAN study-case m =
113, 759, with the subsets Sattack = 22, 373 (18%), and
Sbonafide = 91, 386 (82%). From the original 2, 141, 635
packets, the bonafide subset of 91, 386 packets is composed
only by those from TCP/IP communication.

We perform a pre-processing of S to remove all non-
applicable, redundant, and non-variant features in the
sequence. As S cames from the pcap, we remove all layer 2
(Ethernet) features and keep only the TCP/IP features. Then
we remove the IP header field version and protocol once
they are constant, and IP source and destination fields are
also removed not to associate the learning with the generated
dataset, but to generalize the learning based on the other
features. We remove the following IP fields due to non-
variance: header length, type of service, fragment offset,
more fragments, and reserved bit flags. We also removed the
TCP TTL field once initial tests with this feature make the

6fukuda-lab.org/mawilab/v1.1/2019/11/11/20191111.html

TABLE 5. F1-Score for algorithms evaluated.

model learn the attack testbed architecture (Figure 2). Finally,
the pre-processing results in a feature space of n = 15.
We use the Python language and the scikit-learn over this

step. Then, we proceed with the evaluation of the machine
learning models based on the F1-score criteria. In this study
case, those algorithms are interpretable, and this assumption
enables the next step of the framework that is the realization
of the trained models as LKM/Netfilter module.

The algorithms are Naïve Bayes, Logistic Regression,
Random Forest, and Decision Tree. Those with multiple
parameters (random forest and decision tree) were trained
using a grid search to determine the combination with the
best F1-score performance. Random forest grid-search was
performed with the number of estimators of [10, 50, 100,
200], the criteria of Gini, and entropy; max depth of [5, 10];
and using a class weight of None, balanced, and balanced
subsample, for the decision tree was used the criteria of
Gini, and entropy; max depth up to 21, and class weight
of none, and balanced. The difference between random
forest, and decision tree max depth is due to the number of
estimators for the random forest leading us to reducing its
depth.

All algorithms were evaluated in a stratified k-fold
(k=10) setup. During this evaluation, the features were
standardized by removing the mean and scaling to unit
variance. The summary of the algorithm’s performance is
presented in Table 5.
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FIGURE 5. ROC/AUC analysis.

We moved forward with the decision tree algorithm based
on its best F1-score performance compared to the other
algorithms (slightly better than RF). From the grid-search,
we detailed the parameters’ combination to determine that
adopted in the realization step. According to Figure 4,
we confirmed that the F1-score increase at a max value of
0.96. In this case, we selected the shallow version of the
decision tree with the F1-score of 0.96 to mitigate over-
fitting. This decision results in a max depth of 11, with the
Gini criteria and a balanced class weight.

It is important to note that the decision tree algorithms
perform a feature selection during their training process,
which is considered an embedded feature selection. Due to
this characteristic, we also retrieve the feature importance
from the trained model, allowing us to determine the most
critical features for the classification task in this study case.
Figure 4b presents the feature importance for those features
with importance higher than zero.

We also compare the algorithms using a receiver operating
characteristic (ROC) analysis. First, each algorithm estimates
the positive class probability of all samples in the dataset.
The estimates are calculated using a similar setup as before,
i.e., 10-fold stratified cross-validation, however, the grid-
search on the best hyperparameters optimizes the area under
the ROC curve (AUC). Figure 5 displays the ROC curve
and the respective AUC for each algorithm, with an average
AUC of 0.95. The algorithms DT and RF shows the best
performance overall.

The ROC analysis enables us to understand the expected
true positive rate (TPR) and the expected false positive
rate (FPR) when we change the threshold of the estimated
positive-class probability to label a sample as positive. For
instance, decreasing the default threshold 0.5 to 0.1 – that is,
classifying as positive all samples that have estimated positive
class probability greater than 0.1 – of the DT algorithm
increases the expected TPR from 0.977 to 0.99 at the cost
of also increasing the expected FPR from 0.014 to 0.124.

TABLE 6. Raspberry PI 4 Model B specification.

Moreover, in a real-world scenario, we can adapt the
threshold to achieve a specific goal. The ROC analysis gives
us information to select such a threshold and inform us about
the drawbacks. For instance, if one needs to guarantee an
expected FPR lower than 0.5% using DT, the appropriate
threshold is 0.829 resulting in an expected TPR of 92.3%
according to Figure 5b.

Also, in our experiments, NB cannot achieve such a low
FPR while keeping the expected TPR greater than 0.

4) REALIZATION
We considered our deployment in a single board computer
(SBC). This decision aims to support the deployment of
the port-scanning detection in devices with relatively low
resources compared with regular PC on LAN and to be
possible to extend to devices operating as IoT nodes and
gateways. In this study case, the selected SBC is a Raspberry
Pi 4 with the configuration detailed in Table 6.

The decision tree has the decisive advantage of being easily
implemented as a combination of if-then-else statements.
In this study case, we decided to implement the trained
model as an LKM/Netfilter. The realization started from the
trained scikit-learn model in conjunction with the emlearn
[44] Python library to generate a generic C header file,
then, a manual step was required to change the features
references to the ones available on the Linux kernel header
files. Listing 1 presents an excerpt of the implemented LKM.
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LISTING 1. Pseudo-code from decision tree.

TABLE 7. Comparison execution with and without the LKM for TCP Scan
detection. The overhead is minimal.

5) PERFORMANCE EVALUATION
The last step of the AB-TRAP framework consists of the
realized model’s performance evaluation. The two charac-
teristics under analysis are CPU usage and memory RAM
utilization. We carried out the evaluation with two scenarios:
with and without LKM loaded on the SBC. Then, we used the
iPerf3 tool [45] to generate TCP/IP traffic over 20 minutes
(1200 seconds) from host computer to the SBC with a
sampling rate of 1Hz of the CPU and RAM usage. We use
sysstat tool [46] as an observability tool to retrieve these
metrics.

The performance evaluation of the LKM/Netfilter model
for the decision tree with a max depth of 11, the Gini criteria,
and balanced class weight is summarized in Table 7. Com-
paring the two configurations with and without LKM demon-
strates an overhead minimal from RAM usage, and negligible
about CPU usage in kernel mode. Tests performed with a
Raspberry Pi 3, also confirmed this minimal overhead for a
decision tree with max depth of 11.

B. CLOUD ENVIRONMENT/INTERNET
This variant of the study case presents an environment
change, using the Internet environment instead of the LAN.
So, testing the framework in this new context for the stateless
detection of port scanning.

1) ATTACK DATASET
In this new context, the infrastructure is created through
cloud instances geographically distributed on the world and
presented by Figure 6. One of the instances (us-east-1) is used
as an attacker to perform the port scanning attacks (Table 4)
against all the other instances.

The challenge for the attack dataset generation in the
Internet environment is to coordinate the correct generation

FIGURE 6. Cloud instances to be used as attacker/targets.

FIGURE 7. Lifeline of the attack dataset creation for each attack.

FIGURE 8. ROC/AUC analysis for Internet case.

of the pcap files on each instance and correctly label each
attack performed. Our approach for that is to create a service
on each target instance communicating through UDP, this
decision is not to conflict with the TCP/IP traffic, which is
the scope of this study case. For each attack, the attacker
instance sends a message to the target through UDP to
start the tcpdump. Afterward, performing the port scanning
activity, then a stop message is sent through UDP. This
communication flow is illustrated in Figure 7. The target
instances label its pcap files through a specific filename for
each attack performed that uses a numeric reference and a
timestamp.

For the attacker instance, we use a container from the
Kali Linux docker image and a provisioning shell script that
perform all port scanning attacks in conjunctionwith theUDP
communication using the most recent versions of the tools
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(Nmap, Unicornscan, Hping3, Zmap, andMasscan) available
in the Kali Linux repositories.

After attacks take place against all targets, we retrieve the
pcap files from the instances and, using a Python script,
merge all pcap in a single CSV file and properly labeled
based on the filename. This CSV file is the attack dataset,
composed of 455, 503 packets.

2) BONAFIDE DATASET
For this study case based on the Internet, we considered the
same bonafide dataset used on the LAN case (Sbonafide =
91, 386). However, we merged the dataset with MAWILab
bonafide traffic from November 10, 2020,7 and from
November 29, 2020.8 After splitting, sampling, and filtering
out just TCP/IP traffic, we got a total of 380, 438 packets of
bonafide traffic.

3) TRAINING MODELS
The generated dataset (S) for the Internet case is composed
of n = 835, 941 packets with the following distribution,
Sbonafide = 46% and Sattack = 54%. In comparison with
the LAN study case, this is a more balanced dataset. This
class distribution will allow a better understanding of the
performance achieved by eachML algorithm once the critical
aspects of imbalanced datasets are not in place.

The criteria for pre-processing the dataset used here: we
considered the two applicable layers’ header fields (detailed
in LAN study case) and removed IP source and destination
addresses, including constant and non-variant features. Those
header fields present in aggregate form (e.g., TCP flags) are
considered only the discrete value (e.g., SYN). A difference
from the previous study case is that we kept the TCP
TTL field and source port as a feature. We use Python
for the training step and the scikit-learn package for the
F1-score criteria. However, we evaluate more ML algorithms
in addition to those evaluated in the LAN study case, and they
are Multi-Layer Perceptron (MLP), Support Vector Machine
(SVM), k-Nearest Neighbours (kNN), and XGBoost.

We keep the validation step with the stratified K-fold
(k = 10), and the scaling is the same as the one used on
the LAN study case. All the grid search parameters and the
f1-score for each k-fold are available in the repository. Table 8
summarizes the f1-score performance for all algorithms and
shows the average from each k-fold, the standard deviation is
negligible, and an overall average F1-score of 0.95.

The high f1-score such as 1.00 for MLP is a strong
indication for over-fitting from the dataset’s machine learning
models. It is also important to highlight that the 0.92 f1-
score for logistic regression is a good indication that a simple
parametric model can be used to detect the internet use case.
Despite the inherently correlation between f1-score and the
ROC/AUC, the calculation is also performed through the
estimation of positive class probability for each algorithm

7fukuda-lab.org/mawilab/v1.1/2020/11/10/20201110.html
8fukuda-lab.org/mawilab/v1.1/2020/11/29/20201129.html

TABLE 8. F1-Scores for algorithms evaluated.

FIGURE 9. NIDS packet traversal path.

based on all samples in the dataset. This decision aims to
support further discussion on ROC analysis regarding the
threshold and TPR/FPR trade-off. Figure 8 displays the ROC
curve and the respective AUC for each algorithm, with an
average AUC of 0.98.

All these points can be further analyzed from a data
science perspective. For this case, wemove along considering
the next steps of the framework, the realization and the
performance evaluation, without digging deeper on the
training models step.

4) REALIZATION
In comparison with the previous use case, on this one, we are
still considering the computational device as an SBC. But,
instead of deploying the machine learning model in kernel-
space using LKM, we use a different approach to deploy
the ML models in the userspace. This approach enables
using a multitude of machine learning models abstracting the
complexities to implement them on kernel-space.

The NIDS relies on the functionality available on the
iptables firewall using the Netfilter NFQUEUE module
to enable the decision about the packet in userspace. In our
case, all incoming TCP packet flows from kernel-space
to userspace, and after that to the ML model, this packet
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FIGURE 10. Performance evaluation for each ML Model.

traversal path is shown in Figure 9. The development
of the NIDS in this use case requires transforming the
machine learningmodels into the ‘‘final models,’’ the concept
of the final model is the model trained on all available
datasets with the chosen parameters from grid-search on the
training step. After that, each model becomes a byte stream.
An application developed in Python receives these extracted
models’ deployment and executes them in the userspace with
elevated privileges to execute with NFQUEUE.

5) PERFORMANCE EVALUATION
For the performance evaluation of trained models in this step,
we used the SBC detailed in Table 6.
Notwithstanding the SBC having a gigabit Ethernet

interface, in this performance evaluation, the host computer
interfacing with the SBC has a 100 Mb/s Ethernet interface,
so the nominal interface speed between a host computer and
target device is limited to 100 Mb/s. Similar to the LAN
study case, we are using the iPerf3 tool [45] to generate
TCP/IP traffic for 20 minutes and 1Hz sampling with each
of the eight trained models loaded at once. We deployed
a UDP daemon on the target device to manage this
performance evaluation. Each UDP message was responsible
for starting the iPerf3 server, setting the iptables rules
with nfqueue, loading the NIDS application with the
specific ML model under evaluation, and starting sysstat
monitoring. A shell script was used from the host com-
puter side to generate the eight models’ messages under
evaluation.

For each of the models during the 20 minutes test,
the following performance metrics were measured: CPU
usage and RAM usage. The performance of each model is
presented in the Figure 10a and Figure 10b.
From the CPU usage perspective, KNN, RF, and XGB are

the models that require the most processing power during the
operation of the NIDS. Regarding RAM usage, KNN stands
out as the most resource consumer model followed by the

random forest; the other models do not present significant
differences.

For this study case, we considered two additional metrics:
storage usage and inference time. The first is a helpful metric
to determine the trained model’s deployment feasibility on
an embedded device. In addition, the latter is an important
metric to consider for the specific task that theML application
envisioned. The storage usage was determined from the
extracted model size on the SBC file system. The inference
time was obtained from a workflow consisting of creating
a packet with random attributes (20 times) in conjunction
with Python’s timeit library for averaging 1000 inference
executions over these random packets. Table 9 summarize
the performance for all trained models in conjunction with
a baseline (referred as ‘‘None’’ on Figures 10a and 10b) that
represents the SBC without a ML-model loaded and using
an iptables rule to simply block the packets from iPerf3 in
the baseline scenario. Summarized as an average overhead
of 1.4% CPU, and 3.6% RAM considering the difference
between each model and the baseline.

From the performance results, it is possible to confirm
the negative aspects of KNN for embedded applications
and packet processing. It is a slow algorithm and does
not create a compact model based on the data. Instead,
it requires the complete dataset as part of the model. Such
a characteristic makes the training step more relaxed from
using computational resources. However, the new sample
has its distance calculated with all available examples for
the inference phase, making it resource-intensive when
implementing. In comparison, RF model also presented an
inference time that can become unfeasible for certain appli-
cations. The simpler models such as LR and NB presented
minor impacting results concerning the use of computational
resources. Notwithstanding, for the NB, we observed poor
performance evidence compared with the other algorithms as
detailed in Table 8.

We get to a multi-objective trade-off; we have the
performance metrics based on the computational resources
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TABLE 9. Metrics for each trained model.

and the model performance from the data science perspective
(F1-score, ROC/AUC). Also, this decision is the last decision
step from this framework represented in the Figure 1
by ‘‘Performance Compliant with Need?’’. If successful,
it moves to the deployment of the NIDS solution; otherwise,
getting back to reviewing the ML model or its realization
approach.

V. CONCLUSION
In this paper we present AB-TRAP (Attack, Bonafide, Train,
RealizAtion, and Performance), a framework comprising
steps to build Attack and Bonafide datasets, train machine
learning models, realize (implement) the solution in a target
machine, and evaluate the protection module’s performance.
One of the main concerns in implementing effective Network
Intrusion Detection Systems (NIDS) is the ability to adapt
to new attacks and the evolution of the network traffic.
AB-TRAP systemizes the whole chain of design and
implementation of NIDS solutions and forms a pipeline to
build protection modules for the constant-evolving malicious
activities. Moreover, we highlight that AB-TRAP is part of an
iterative process where the network traffic source (malicious
or bonafide) is the input and the updatable modules (e.g.,
suitable for Over-the-air update or Linux Kernel Modules)
are the output.

We test AB-TRAP in two environments: LAN and the
Internet. In both cases, we achieve low-resource utilization
protection modules, and Decision Tree provides the best
performance for the training and realization phases. In the
first case study, our results show an f1-score of 0.96, and
the overhead is negligible (Table 7) — this represents the
kernel-space implementation with Linux Kernel Modules.
In the Internet case study, Decision Tree stills represent a
good choice; however, other modules are also candidates for
implementation, as is the Logistic Regression case. We see
a more significant overhead compared to the first case
study, and one of the reasons for this is the shifting of the
implementation from kernel-space to userspace.

As future work, we plan to conduct a multi-label
classification (narrowing the scope) to understand which
reconnaissance activities are challenging to identify; improve

the generation of datasets withmoremalicious cases; produce
protection modules for the lwIP (lightweight IP), and test
it in smaller operating systems such as ZephyrOS and
FreeRTOS. Power consumption is a crucial performance
metric to battery-aware systems, and we will include it in our
future implementations.

A. OPEN SOURCE FRAMEWORK
The AB-TRAP framework, which allows to replicate the
results shown in this paper and includes the source code for
both kernel-space, and user-space applications, are available
at https://github.com/c2dc/AB-TRAP/.
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