
Enumeration of operating systems and services in the wireless
router’s firmware context

Gianluigi Dal Toso1, Lourenço Alves Pereira Júnior1

1Divisão de Ciência da Computação
Instituto Tecnológico de Aeronáutica — ITA

Campo Montenegro – São Jose dos Campos – SP – Brazil

gianluigi.toso@ga.ita.br,ljr@ita.br

Abstract. The widespread adoption of the home office weakens corporate net-
works, as it extends its perimeter to homes and ineffective security policies de-
signed for different operating environments. In this context, wireless network
routers serve as enablers of access to critical services. However, identifying
the software artifacts and possible vulnerabilities present on these devices is
challenging, and a heuristic for this purpose is to obtain firmware available on
the manufacturers’ websites. This paper presents the analysis of 5265 firmware
images downloaded from 5 vendors’ sites, yielding a list of the most common
operating systems and services, with the intent of, in a future work, perform se-
curity analysis in scale on the obtained firmware images. The exploitation of
these components can lead to large-scale attacks, and our results contribute to
the vulnerability cataloging process.

Resumo. A ampla adoção do home-office fragiliza as redes corporativas, pois
estende seu perı́metro até as residências e inefetiva polı́ticas de segurança
planejadas para ambientes operacionais diferentes. Nesse contexto, roteadores
de rede sem-fio servem como habilitadores de acesso a serviços crı́ticos. No
entanto, identificar os artefatos de software e possı́veis vulnerabilidades pre-
sentes nesses equipamentos é desafiador, e uma heurı́stica para esse fim é a
obtenção de firmwares disponı́veis nos sites dos fabricantes. Neste artigo apre-
sentamos a análise de 5265 firmwares e enumeramos os sistemas operacionais e
serviços mais comuns, com o intuito de, em trabalho futuro, realizar análises de
segurança em escala nos firmwares obtidos. A exploração desses componentes
pode culminar em ataques de grande escala, e nossos resultados contribuem
para direcionar a catalogação de vulnerabilidades.

1. Introduction
Cybersecurity is a crucial area in our current context and plays a critical role in the strate-
gic points for business continuity [Klint 2021]. According to the World Economic Forum
2021 Global Risk Report [McLennan 2021], incidents of this nature represent one of the
greatest post-pandemic challenges and have the potential to cause economic disruption,
financial losses, geopolitical tensions, and social instabilities. Therefore, it is important to
emphasize that cybersecurity should be an essential part of the product and service devel-
opment lifecycle. It is possible to observe that, in the past, cyber attacks were publicized
in specialized media; however, due to the digital transformation the world is undergoing,

these types of incidents have appeared in vehicles aimed at the general public (eg, JBS in
June 20211, USA Pipelines May 20212, TJ-RS in April 20213, STJ in November 20204,
just for highlight a few). Hence, there is a relationship between cyber attacks and impacts
on different areas of activities in the productive sector [Lobo 2019].

Attacks are not punctually targeted at just a specific system but can be
part of large-scale campaigns aimed at orchestrating large-scale malicious activ-
ity [Bertino and Islam 2017]. In this sense, a typical case deals with compromising com-
putational resources (computers, smartphones, Wi-Fi routers, monitoring cameras, and
many other small devices), comprising a command and control chain activated at the
attacker’s convenience. Internet of Things (IoT) devices are common targets because
of their flawed update and maintenance cycle, allowing the creation of botnets like Mi-
rai [Chacos 2016] and Mozi [McMillen 2021]. Therefore, considering the policy of little
updating, the neglect of adopting a development process that includes security as an es-
sential element, and the advance in adopting computer systems as enablers of new tech-
nological solutions, more and more IoT systems are a frequent target of malicious actors.

Since December of 2019, the COVID’s pandemic acts as an unexpected ground-
breaking factor that changed humanity’s course. The ability to work in a person’s home
has been an increasing desire in society, and following the fast advances in technology,
companies were already experimenting with remote models of work. However, amidst
the COVID-19 pandemic, many cities imposed mobility restrictions in order to restrain
virus spreading. As companies have adopted remote work, there is a tendency to increase
this model considerably in a post-COVID world. Working from home expands the compa-
nies’ network perimeter, exposing digital assets to new threats and vulnerabilities. Conse-
quently, it causes an increase in a company’s attack surface as small and home office types
of equipment are potentially more vulnerable. Home wireless routers, for instance, are the
worker’s first access to the internet and may be running firmware with security breaches
that could leverage to provoke a cybersecurity incident [Mudgerikar and Bertino 2021].

Identifying the software artifacts present on these devices is challenging due to the
wide adoption of these devices in the small and home-office (SOHO) context and requires
a considerable amount of computational effort to infer. Therefore, a heuristic approach is
convenient to succeed in such a task, providing the infeasibility to perform reconnaissance
on a large scale. One approach is to detect vulnerabilities in firmware products before the
attackers and report them back to the vendor to prevent this kind of attack. Once de-
termined, the manufactures can patch the system to fix the identified security breaches
and release the binary in their sites. Furthermore, a heuristic for this purpose is to obtain
firmware available on the vendors’ websites. This paper aims to discuss a way to automate
the security analysis and vulnerability detection in wireless router firmware via re-hosting

1https://www.nytimes.com/2021/06/01/business/meat-plant-cyberattack-
jbs.html

2https://www.bbc.com/news/business-57112371, http:///www.nytimes.com/
2021/05/10/us/politics/dark-side-hack.html

3https://g1.globo.com/rs/rio-grande-do-sul/noticia/2021/04/29/tj-
rs-says-that-court’s-computer-system-was-target-of-hacker-attack-and-
alot-grave.ghtml

4https://www.cisoadvisor.com.br/stj-comunica-superacao-do-incidente-
cibernetico-com-ransomware/

https://www.nytimes.com/2021 /06/01/business/meat-plant-cyberattack-jbs.html
https://www.nytimes.com/2021 /06/01/business/meat-plant-cyberattack-jbs.html
https://www.bbc.com/news/business-57112371
http:// /www.nytimes.com/2021/05/10/us/politics/dark-side-hack.html
http:// /www.nytimes.com/2021/05/10/us/politics/dark-side-hack.html
https://g1.globo.com/ rs/rio-grande-do-sul/noticia/2021/04/29/tj-rs-says-that-court's-computer-system-was-target-of-hacker-attack-and-a lot- grave.ghtml
https://g1.globo.com/ rs/rio-grande-do-sul/noticia/2021/04/29/tj-rs-says-that-court's-computer-system-was-target-of-hacker-attack-and-a lot- grave.ghtml
https://g1.globo.com/ rs/rio-grande-do-sul/noticia/2021/04/29/tj-rs-says-that-court's-computer-system-was-target-of-hacker-attack-and-a lot- grave.ghtml
https://www.cisoadvisor.com.br/stj-comunica-superacao-do-incidente-cibernetico-com-ransomware/
https://www.cisoadvisor.com.br/stj-comunica-superacao-do-incidente-cibernetico-com-ransomware/

the original firmware in an emulator before executing vulnerability analysis and discovery
techniques. We present the enumeration of 5265 downloaded from 5 vendors’ sites, yield-
ing a list of the most common operating systems and services. The pieces of information
gathered in this enumeration can be used to determine the most prominent target for ex-
ploitation. Firmware images matching this target can then be scanned for vulnerabilities.
One way to search for vulnerabilities in scale is to re-host the target firmware images in
an emulator so that it can execute without the real device, and using vulnerability detec-
tion techniques, such as fuzzing, against the re-hosted firmware. The exploitation of these
components can lead to large-scale attacks, and our results contribute to the vulnerability
cataloging process.

With this work. we aim to prevent future network router attacks by assuming the
attacker position in enumerating the most common resources and vulnerabilities found in
network devices firmware images. Our intention is to investigate if from the large amount
of firmware available from open sources (vendors’ sites), it could be possible to extract
enough knowledge so that a large scale attack could be performed. If that is the case,
vendors could be warned, allowing them to patch their devices.

This paper’s remainder is structured as follows. We describe the most relevant
related solutions in Section 2. In Section 3, we describe our approach to perform wire-
less router reconnaissance. We describe the validation of our proposal and the results in
Section 4. Finally, we summarize our work and provide future works in Section 5.

2. Related Works
Considering the context of our study, understand the running components (operating sys-
tems, file systems, services) in the router’s firmware contribute to the re-hosting. Re-
hosting is a technique for executing a tightly coupled system in another hardware or plat-
form (in our case, in emulation). Thus, our contribution relies upon this context. We
observed different approaches regarding overcoming re-hosting difficulties caused by the
need for peripherals of the original hardware that are not present in the emulated device.
For example, the work of [Wright et al. 2021] surveys the prominent techniques used in
firmware re-hosting to bypass actual hardware dependency. Thereby, the four most com-
mon approaches are Partial Emulation, Fuzzing, Learning, and Abstraction Replacement.

2.1. Partial Emulation
Partial emulation, also known as “hardware in the loop”, consists of emulating most
firmware execution; however, redirecting to the actual device hardware calls when the
firmware asks for a peripheral is infeasible. This approach requires having an actual de-
vice available, and for this reason, it does not scale. Execution fidelity, on the other hand,
is pretty close to the actual hardware execution. The work of [Koscher et al. 2015] en-
hances hardware redirecting by building a hardware bridge using an FPGA board to con-
nect the PCI bus on the emulating host with the PCI bus on the actual embedded device,
an approach they called SURROGATES.

The work of [Muench et al. 2018] extensively explores vulnerability discovery in
embedded devices using the hardware in the loop technique. They use a symbolic en-
gine builds upon QEMU called S2E to search for vulnerabilities in IoT devices through
re-hosting and to redirect peripherals calls to the actual hardware. In addition, they imple-
ment a tool called Avatar2 as a reverse engineering framework based on the hardware in

the loop approach. Nonetheless, the dependency on the physical systems imposes barriers
in testing.

2.2. Fuzzing

To overcome the partial emulating techniques, Fuzzing is a re-hosting approach to hard-
ware dependence (not to be confused with fuzzing as a vulnerability discovery technique)
because hardware calls to peripherals do not need the peripheral to be successful. Instead,
the actual peripheral response request to the hardware call is just a binary value. There-
fore, knowing the range of values that provide an acceptable answer to the hardware call,
selecting any random value within this range is enough to keep executing the emulated
system.

[Feng et al. 2020] effectively implements this kind of hardware bypass. The au-
thors present an approach to model the interface between the processor and the peripheral.
The method suggested is called P2IM - Processor-Peripheral Interface Modeling. How-
ever, it requires a human specialist to model the interface between the CPU and a specific
peripheral to determine the specific range of values to each hardware call. Therefore,
this approach also does not provide a scalable solution, requiring human intervention (to
model the interface).

2.3. Learning

Learning is a similar approach to fuzzing for re-hosting, as it relies on the fact that to
bypass hardware dependence, it is only needed to return expected values to hardware
calls. However, the learning approach, as used in [Gustafson et al. 2019] first monitors
actual hardware execution and registers each hardware-peripheral interaction. Then it
uses a Machine Learning algorithm to build a model of the interface (in contrast to using a
human specialist as in the fuzzing approach). As a result, the learning technique produces
a better interface to simulate peripheral interaction; however, it also depends on having the
actual hardware first to build the interface’s working model, which impedes its scalability.

2.4. Abstraction Replacement

Abstraction Replacement takes a different approach, and instead of producing answers to
hardware calls that are similar to the responses real hardware would produce, this method
tries to remove from the original firmware the hardware call, replacing it with another
abstraction not requiring the actual hardware.

In the work of [Clements et al. 2020], they develop the method called
Halucinator, whose idea is to search for Hardware Abstraction Layer (HAL) libraries
inside the firmware and replace those libraries with custom libraries implemented by the
researchers that do not require peripherals to work. However, this method still requires
human intervention for each firmware and thus, still does not scale.

On the other hand, the work of [Chen et al. 2016] implements a tool called
Firmadyne, whose approach to re-hosting consists of replacing the original kernel
found on the firmware image with a custom implemented and instrumented kernel worked
by their team (the same kernel is used to all firmware images emulated, regardless their
original kernel version). This approach allows firmware emulation to be done at scale,
with the counterpart that the kernel replacement sacrifices emulation fidelity. The authors

of Firmadyne also implemented a web scraper capable of downloading firmware bi-
nary from popular vendors website and then used Firmadyne to emulate and perform
security analysis on the downloaded firmware images.

2.5. Summary

As we can see, many of the re-hosting techniques rely on non-scalable mechanisms. For
example, Hallucinator and Firmadyne provide an improvement to enable analysis at scale;
however, they impose limitations and remove much software running in kernel mode.
We present a proposal that differs from others by increasing the re-hosting coverage of
operating systems in small and home-office systems (SOHO). Our work provides a vision
of operating systems to focus on, including a hardware architecture, version, and file
systems. Hence, identify dependencies in components (specific drivers) and maximize
artifacts with favorable prominence (e.g., network stack). As a result, it advances the
state-of-the-art by bringing pieces of software left out of the emulation loop.

3. SCREEN: Scraper, Clustering, RE-hosting, and ExploitatioN

This section presents an architecture for examining firmware available for download on
vendors’ websites to discover the most common components. Next, we focus on pieces
of software (or artifacts) targeted to run in kernel mode. Hence, we define SCREEN:
Scraper, Clustering, RE-hosting, and ExploitatioN. Our research enables the evaluation
of SOHO in the large-scale re-hosting of router firmware images based on Linux kernel
and the innovative aspects of the approach intended in this project.

3.1. The Architecture description

This paper represents only part of a solution idealized for a more extensive research
project to be conducted throughout the years by a team of researchers. Figure 1 illus-
trates the overview of the architecture for the complete project, whereas in this paper, we
focus on the re-hosting part of the proposed architecture.

Scraper

Clustering Re-hosting

Exploitation

Local
repository

Vendors

Realistic
testbed

SCREEN: Scraper, Clustering,
RE-hosting, and ExploitatioN

Most common
artifacts

Automated by
emulation

Figure 1. Architecture proposed for a complete solution in firmware vulnerability
analysis.

The complete architecture includes a scraper module consisting of a web crawler
responsible for entering router vendors’ websites and downloading for a local repository
the most considerable amount of firmware images available as possible. The re-hosting
experiments require the availability of firmware images. In this stage, the scraper module
serve the purpose of providing a minimum amount of firmware images to allow the re-
search in the re-hosting process. Therefore, we adopt Firmadyne’s [Chen et al. 2016] as
baseline to implement our scraper. Our project is expanding the Firmadyne’s scraper by
adding more vendors to the list, as we are adding new sources to it.

From the local repository, two different modules perform actions using the ac-
quired firmware. First, the re-hosting module is responsible for extracting firmware im-
ages (and collecting information about the firmware in the process) and preparing the
firmware image to be emulated. As this module is the focus of this paper, Section 3.3 will
explain this process in detail. The other module to perform actions in firmware images
contained in the local repository is the clustering module. It consists of searching for
similarities and patterns amongst different firmware images. The results obtained by the
clustering modules are helpful in steps to improve the vulnerability analysis and discovery
process.

Finally, the exploitation module provides means to create weapons to abuse the
targeted systems. In this stage, vulnerability analysis (using frameworks to detect known
software vulnerabilities) and vulnerability discovery (such as fuzzing techniques) is ap-
plied to the emulated firmware to analyze its security performance.

3.2. Firmware Extraction

For the firmware extraction process, our research focuses on enhancing the original script
provided with Firmadyne for firmware extraction developed in Python and making ex-
tensive use of binwalk’s API. This original script uses binwalk to recursively extract
the firmware image setting a limit for depth and breadth in order to limit this process as
it is prolonged. Furthermore, to speed up the extraction, the /tmp directory of the host
system (which stores files during the firmware extraction process temporarily) is going to
be mounted on the tmpfs provided by the Linux kernel, and that allows us to mount a
directory in the RAM instead of mounting it on the disk.

Nonetheless, this method is potentially incapable of automatically extract some
firmware images. Because not all firmware follows standard implementation, and fre-
quently vendors obfuscate compression and file systems, we marked the failure subjects
to posterior examination. Afterward, we inspect the marked ones to identify constraints
and verify how to improve the automated image extraction. Then, subsequent modifying
the extraction script, this entire process is repeated until satisfactory reach the maximum
level in the extracted firmware images.

3.3. Re-hosting Process

We aim to maximize the portion of the original firmware during the re-hosting phase,
absenting the original hardware. Firmadyne’s approach to firmware re-hosting extracts
from the original firmware image its original root filesystem and kernel. It then com-
pletely ignores the original kernel and replaces it with a custom instrumented kernel de-
signed by the researchers (they developed one instrumented kernel for ARM architecture

and one for MIPS architecture). Finally, the QEMU tool is responsible for the emulation
process, which uses binary translation to allow the execution of binaries from different ar-
chitectures. The emulated firmware is emulated with QEMU using the instrumented kernel
together with the extracted filesystem from the original firmware.

Our approach to firmware re-hosting is similar to Firmadyne’s one, with differ-
ences regarding the kernel replacement part. Instead of just building one heavily instru-
mented kernel and replacing all firmware images with that same instrumented kernel, we
propose building-specific kernel versions on demand according to the original kernel used
by the firmware image under emulation. With that, our heuristics correspond to use a more
similar kernel to the original to reduce incompatibility with network drivers and modules
and therefore increase the number of emulated firmware with a working network inter-
face. In addition, increasing the emulation coverage allow us to extend the vulnerability
analysis and discovery process to a more significant amount of router firmware images
than the one covered by the original Firmadyne’s implementation.

This process of automated kernel cross-compilation, however, faces many issues.
The first one is how to define a valid kernel compile configuration that results in a kernel
that has the features expected in router firmware. Kernel compile configuration is a con-
figuration file (.config) where the user can configure an extensive list of parameters to
include or exclude features to the compiled kernel.

These configuration files can be filled up by the user manually, via answering
questions interactively in the command-line interface, or ultimately adopting an existing
file used by a current firmware’s kernel previously compiled. Defining how to produce a
good .config file is already an open problem in our research. Another idea is to extract
kernel compilation default configuration from OpenWrt Linux systems. The OpenWrt is
a Linux targeted to serve as an open-firmware for wireless routers. Thereby, OpenWrt im-
ages may have kernel configurations compatible with most networking features expected
from a wireless router. In this way, in this research, we plan to investigate the better way
to produce a valid compilation configuration file to allow kernel compiling.

After choosing a valid kernel compilation configuration file, the kernel has to be
cross-compiled in the host machine to compile for the architecture expected in the orig-
inal firmware image. Unfortunately, kernel cross-compilation is also challenging, as the
compilation process is heavily dependent on its toolchain (compiler, utilities, and libraries
versions). Furthermore, it means that to compile multiple different kernel versions auto-
matically; there must be a way to automatically switch between a set of known working
toolchains for each kernel version.

Another approach, to reduce the number of parameters that need to be configured
in order to build a very tailored kernel for each firmware, could be to use the enumeration
and focus on building a repository with the most common kernel versions (or at least
kernel families). Then, for the re-hosting, for each firmware image, an heuristic could be
used to determine which compiled kernel from the repository is the most similar to the
original kernel expected from the firmware. This matching kernel could then be selected
to be used during the re-hosting process.

After compiling a kernel version that matches the original kernel, the firmware
image is then ready to be emulated using the QEMU. First, the newly compiled kernel

serves as firmware in emulation with the original filesystem extracted from the firmware
sample. After that, following the work of [Chen et al. 2016], we evaluate if these emu-
lated firmware images can infer and configure the network successfully. If that is the case,
vulnerability analysis and discovery techniques are applied (using standard tools for this
purpose). Finally, the results obtained are helpful to evaluate overall firmware security,
reporting the mapped vulnerable products (if that happens) to the vendor.

Figure 2 illustrates how the SCREEN approach to re-hosting differs from the one
used by Firmadyne. While Firmadyne uses one heavily instrumented kernel with all
firmware images during the re-hosting process, SCREEN will build kernels using the
information gathered from the firmware images and select a more suitable kernel from
the repository to use when re-hosting a specific firmware image.

Firmware images Firmadyne

Instrumented Kernel

Re-hosted Firmware

(a) Firmadyne approach to re-hosting.

Firmware images SCREEN Re-hosted Firmware

Build Custom Kernel

Kernel Repository

(b) SCREEN approach to re-hosting.

Figure 2. Comparison between the approaches used by Firmadyne and SCREEN
during the re-hosting phase.

4. Results
When considering the analysis on a large scale, one can experience a wide range of hetero-
geneity in firmware components and operating systems. Pragmatically, a full re-hosting
by emulation is impossible by nature; then, discover the most common artifacts is crucial
to steer efforts on porting components to QEMU. In this Section, we realize the first step
in the SCREEN re-hosting phase by identifying operating systems, architecture, and file
systems. Then, we discuss the results obtained in firmware acquisition and firmware ex-
traction. We improve Firmadyne performance (our baseline), serving as a demonstration
of our approach.

4.1. Firmware acquisition
For the firmware acquisition, we used a fork of the Firmadyne’s original scraper
[Scholten 2020]. This modified scraper version has fixed some compatibility issues the
original scraper has with Python 3 and also updates the spiders to match the more up-
dated version of vendor websites. Without modifying any of the spiders provided by the
scraper, we selected five vendors (these five vendors were selected at random, as a mean
to start the research, but the final goal is to use all available vendors within the scraper)
and executed the scraper to find and download firmware from these vendors’ websites
automatically. In total, we downloaded 5265 firmware images throughout this process.
Table 1 shows the number of firmware images and its combined file size for each vendor.

As this work’s goal is towards re-hosting, this amount of firmware images is al-
ready enough for initial experiments with automated re-hosting. Notwithstanding, we can
explore more vendors’ pages and update scraper’s spiders if we judge there is a need for
a larger volume of firmware images.

Table 1. Downloaded firmware images per vendor

Vendor Firmware Images Combined File Size
Netgear 3122 93 GB
TP-Link 1320 10 GB
D-Link 430 6.7 GB
Ubiquiti 226 20 GB
Tenda 167 1 GB

4.2. Firmware extraction

The binwalk tool plays an essential role in our firmware extraction process, executed
with a firmware image as a parameter. To start the extraction process, we took advantage
of an already implemented script within Firmadyne [Chen et al. 2016] that recursively
tries to extract files using binwalk for this purpose. It defines a breadth and depth limit
to this recursion strategy. During the extraction process, the script then tries to identify
if any of the extracted directories has a Linux root directory structure (i.e. has /bin,
/etc, /usr directories and so on). In this case, the filesystem structure is compressed
and stored separately (also defined as a parameter to the script). The Firmadyne suc-
cessful extraction rate was 51.17% of the total amount of firmware (2694 images). Of
these extracted images, 48.52% (1307 images) had the filesystem extracted, and of these,
83.55% (1092 images) had the architecture identified. Architecture identification is made
by reading files in filesystem directories that should contain binary files (e.g. /bin or
/sbin) and reading the header of these files.

Kernel detection is done by reading each entry identified by binwalk in the
extraction process and detecting known kernel types. These are also extracted and stored
in a separate location. When using the script, the user has the option to disable kernel
extraction, as this dramatically improves execution speed since binwalk spends much
effort in the extraction process. If kernel extraction is not disabled by the user, then the
script also tries to identify the kernel version and store this information in a database.

As this process is incapable of identifying all kernels, we also developed an ad-
ditional script that uses regular expressions to search the extracted filesystem of each
firmware image with a non identified kernel during extraction and for directories that
could reveal kernel version (e.g. /lib/modules/2.6.31 is an indication that this
image contains a 2.6.31 Linux kernel). This search is swift compared to the filesystem
extraction process and increased the number of kernel versions detected. Initially, with
the Firmadyne’s original extraction script, 983 kernels were identified amongst the 2694
(36.49%) of the total amount of firmware images. However, after running the described
heuristics to determine kernel version from the filesystem, the number of identified kernels
increased to 1169 (18.92% greater). Figure 3 illustrates this success funnel for firmware
image extraction in a bar chart.

It was also identified two issues in the extraction process. First, we observed
incorrect identification in some kernel image media types (formerly known as MIME
types) as a type on the extraction script denylist, which is easily corrected by excluding
the identified type from the denylist. The second issue is related to the recursive extraction
process. The limits in breadth and depth exploration allow the binwalk tool to have

Figure 3. Success funnel for firmware image extraction.

functional performance, but in some cases, these limits were, in fact, responsible for the
firmware extraction to be unsuccessful. Therefore, we believe in using a heuristic to select
files with the most potential to hold firmware kernel or filesystem to be extracted next.
This way, we can still have breadth and depth limits to maintain the extraction process
feasibly, but it would also focus the extraction in more prominent files. Unfortunately,
this approach of using heuristics, although idealized, was not yet implemented in our
work.

Another enhancement we developed to the extraction process was the ability to
extract additional kernel information. During kernel extraction, we scanned the kernel bi-
nary file for ASCII strings. From this search result, we then extract kernel banner (a string
containing kernel version, compiler version used during kernel compilation, compilation
date, and email of the developer who compiled the kernel) or identify, for instance, if the
extracted system refers to an OpenWrt Linux. We store these additional pieces of infor-
mation in a database. The database we implemented was also based on the database used
by Firmadyne, but we had its schema altered to contain new columns to store the extra
information we decided to collect.

4.2.1. Statistics

Regarding firmware extraction and feature identification, we collected some statistics that
may help the following steps of this work in kernel compilation and firmware re-hosting.
Table 2 shows the amount of firmware detected for each architecture identified. Tables 3
and 4 shows the five most common kernel versions and kernel families respectively. Also,
Table 3 shows the number of known CVEs for each kernel version. The number of known
CVEs was extracted from the CVE Details [Özkan] database 5. For architectures and ker-

5For some kernel versions, the www.cvedetails.com database contains repeated entries with a
different number of known CVEs. The biggest number for each repeated version was chosen.

nel families, we couldn’t find a way to easily extract the number of known vulnerabilities
from open sources of information.

Table 2. Number of images identified for each found architecture

Architecture Quantity of Images
mipseb 485
armel 336
mipsel 249
mips64eb 11
ppceb 10

intel64el 1

Table 3. Five most common kernel versions found in extracted firmware images
and number of known CVEs for each version.

Kernel Version Quantity of Images Number of known CVEs
2.6.31 167 36
2.6.36 122 20
3.3.8 46 133

3.14.77 44 0
2.6.22 44 113

Table 4. Five most common kernel families found in extracted firmware images.

Kernel Family Quantity of Images
2.6 484

3.14 63
3.3 46

3.10 38
3.4 33

The information gathered in this phase is going to be used as a mean to select the
first firmware files that are going to be re-hosted in future work as a mean to search for
vulnerabilities.

4.3. Kernel Cross-compilation & Toolchain Building

As shown by Table 4, kernel family 2.6 was the most commonly found amongst success-
fully extracted kernels. Therefore, we investigated the difficulties of cross-compiling a
2.6 Linux kernel. At first, we tried to cross-compile the kernel in a raw modern operating
system. We chose Debian 10 (running with Linux kernel version 4.19) as the starting
point for this experiment. In this environment, with gcc version 8.3.0 as the compiler
and using libc version 2.28.10, it was not possible to compile the target kernel.

Then we downloaded an old version of the Debian operating system, with a release
date similar to the 2.6 Linux kernel. We employ Debian 3.1r8 (kernel 2.4.27) for this
experiment. Using this old operating system, with gcc version 3.3.5 as the compiler

and using libc version 2.3.2, we had success in compiling the target kernel. Therefore,
it highlights the impact the toolchain (compiler, binary utilities, and library versions)
has on the kernel compiling process, and therefore, to achieve a way to automate kernel
compiling, we also need a way to automate toolchain building. In this context, we adopted
the crosstool-ng tool. With this program, the user can define, between some pre-
configured settings, specific versions for each tool inside the toolchain, and the program
then tried to compile the desired toolchain.

Using crosstool-ng we were then able to successfully compile a 2.6 Linux
kernel inside a Debian 10 (modern operating system). However, when trying to cross-
compile the target kernel for the MIPS architecture (cross-compiling), we still faced issues
that did not allow the kernel to compile successfully and require further investigation to
build a working toolchain for this scenario.

5. Conclusions

We present SCREEN: Scraper, Clustering, RE-hosting, and ExploitatioN a framework to
obtain, analyze small and home-office (SOHO), and exploit firmware from vendors’ web-
site. Our solution allows a comprehensive view of this task, providing a concern-based
division of responsibilities. Moreover, we demonstrate this utilization by downloading
5265 copies of the firmware from 5 different vendors. Finally, we cross-compiled the
most common kernel and reported future directions to increase the coverage of kernel-
mode running artifacts.

From our obtained results so far, we could already improve in the state-of-the-art
of identifying the kernel in about 19% (from Firmadyne 983 to 1169) using our approach
to find the kernel information inside files from the filesystem. The Linux Kernel is the
most adopted operating system, mainly in the family version 2.6. Precisely, the versions
2.6.31 and 2.6.36 correspond to the majority of the kernel-mode running software.
From the 1092 identified firmware, MIPS is the preferred architecture (about 68%), fol-
lowed by ARM (about 30%), PPC (about 1%), and Intel x86 with a single copy. Other
results include the extensive use of busybox to realize userland tools and the absence of
sudoers users. Finally, the cross-compiling tools are prominent to enable the re-hosting
on a large scale; however, it requires a more considerable effort to reach its full potential.

As future work, we plan to acquire more firmware by adding other vendors and
increase the information gathered from the local repository. Also, improve the cross-
compiling mechanisms and bring them to a level that allows automation; and then, de-
velop metrics to measure the coverage in the re-hosting task. Finally, we aim to perform a
large-scale re-hosting and vulnerability searching in the most prominent firmware images
using the architecture illustrated by Figure 2b and will be able to investigate if a large-
scale attack against home network routers could be feasible and in this case, how it could
be avoided.

Acknowledgements

This work was supported in part by ITA’s Programa de Pós-graduação em Aplicações
Operacionais (ITA/PPGAO).

References

Bertino, E. and Islam, N. (2017). Botnets and internet of things security. Computer,
50(2):76–79.

Chacos, B. (2016). Major ddos attack on dyn dns knocks spotify, twitter, github, paypal,
and more offline. https://www.pcworld.com/article/3133847/ddos-
attack-on-dyn-knocks-spotify-twitter-github-etsy-and-
more-offline.html. Published on 21/10/2016; accessed on 03/06/2021.

Chen, D. D., Woo, M., Brumley, D., and Egele, M. (2016). Towards automated dynamic
analysis for linux-based embedded firmware. In NDSS, volume 1, pages 1–1.

Clements, A. A., Gustafson, E., Scharnowski, T., Grosen, P., Fritz, D., Kruegel, C., Vi-
gna, G., Bagchi, S., and Payer, M. (2020). Halucinator: Firmware re-hosting through
abstraction layer emulation. In 29th USENIX Security Symposium (USENIX Security
20), pages 1201–1218. USENIX Association.

Feng, B., Mera, A., and Lu, L. (2020). P2im: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling. In 29th USENIX Se-
curity Symposium (USENIX Security 20), pages 1237–1254. USENIX Association.

Gustafson, E., Muench, M., Spensky, C., Redini, N., Machiry, A., Fratantonio, Y.,
Balzarotti, D., Francillon, A., Choe, Y. R., Kruegel, C., and Vigna, G. (2019). To-
ward the analysis of embedded firmware through automated re-hosting. In 22nd In-
ternational Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019),
pages 135–150, Chaoyang District, Beijing. USENIX Association.

Klint, C. (2021). These are the top risks for business in the post-covid
world. https://www.weforum.org/agenda/2021/01/building-
resilience-in-the-face-of-dynamic-disruption/. Published on
19/01/2021; accessed on 03/06/2021.

Koscher, K., Kohno, T., and Molnar, D. (2015). SURROGATES: Enabling near-real-
time dynamic analyses of embedded systems. In 9th USENIX Workshop on Offensive
Technologies (WOOT 15), Washington, D.C. USENIX Association.

Lobo, S. (2019). Understanding the cost of a cybersecurity attack: The losses organiza-
tions face. https://hub.packtpub.com/understanding-the-cost-
of-a-cybersecurity-attack-the-losses-organizations-face/.
Published on 31/03/2019; accessed on 03/06/2021.

McLennan, M. (2021). The global risks report 2021 16th edition. https://www.
weforum.org/reports/the-global-risks-report-2021. Published
on 19/01/2021; accessed on 10/09/2021.

McMillen, D. (2021). Internet of threats: Iot botnets drive surge in network at-
tacks. https://securityintelligence.com/posts/internet-of-
threats-iot-botnets-network-attacks/. Published on 22/04/2021; ac-
cessed on 03/06/2021.

Mudgerikar, A. and Bertino, E. (2021). IoT Attacks and Malware, pages 1–25. Springer
Singapore, Singapore.

https://www.pcworld.com/article/3133847/ddos-attack-on-dyn-knocks-spotify-twitter-github-etsy-and-more-offline.html
https://www.pcworld.com/article/3133847/ddos-attack-on-dyn-knocks-spotify-twitter-github-etsy-and-more-offline.html
https://www.pcworld.com/article/3133847/ddos-attack-on-dyn-knocks-spotify-twitter-github-etsy-and-more-offline.html
https://www.weforum.org/agenda/2021/01/building-resilience-in-the-face-of-dynamic-disruption/
https://www.weforum.org/agenda/2021/01/building-resilience-in-the-face-of-dynamic-disruption/
https://hub.packtpub.com/understanding-the-cost-of-a-cybersecurity-attack-the-losses-organizations-face/
https://hub.packtpub.com/understanding-the-cost-of-a-cybersecurity-attack-the-losses-organizations-face/
https://www.weforum.org/reports/the-global-risks-report-2021
https://www.weforum.org/reports/the-global-risks-report-2021
https://securityintelligence.com/posts/internet-of-threats-iot-botnets-network-attacks/
https://securityintelligence.com/posts/internet-of-threats-iot-botnets-network-attacks/

Muench, M., Nisi, D., Francillon, A., and Balzarotti, D. (2018). Avatar 2: A multi-target
orchestration platform. In Proc. Workshop Binary Anal. Res.(Colocated NDSS Symp.),
volume 18, pages 1–11.

Scholten, C. (2020). Github repository: scraper. https://github.com/
cpbscholten/scraper. Published on 27/11/2020; accessed on 10/09/2021.

Wright, C., Moeglein, W. A., Bagchi, S., Kulkarni, M., and Clements, A. A. (2021). Chal-
lenges in firmware re-hosting, emulation, and analysis. ACM Comput. Surv., 54(1).

Özkan, S. Cve details: The ultimate security vulnerability datasource. https://www.
cvedetails.com/. Accessed on 13/09/2021.

https://github.com/cpbscholten/scraper
https://github.com/cpbscholten/scraper
https://www.cvedetails.com/
https://www.cvedetails.com/

	Introduction
	Related Works
	Partial Emulation
	Fuzzing
	Learning
	Abstraction Replacement
	Summary

	SCREEN: Scraper, Clustering, RE-hosting, and ExploitatioN
	The Architecture description
	Firmware Extraction
	Re-hosting Process

	Results
	Firmware acquisition
	Firmware extraction
	Statistics

	Kernel Cross-compilation & Toolchain Building

	Conclusions

